全国咨询电话 15621707227

小型A/O生化污水处理设备

发布时间: 2024-06-07

A/O生化污水处理设备

A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。

A/O工艺将前段厌氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在厌氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经厌氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在厌氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为HO3-,通过回流控制返回至A池,在厌氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

一、
工艺流程

A/O工艺流程图 
活性污泥几种主要运行方式工艺参数比较

单位:Ls─污泥负荷 KgBOD5/KgMLSS·d
Lv─容积负荷 KgBOD5/m3(有效容积)·d
MLSS─混合液浓度mg/L
R─污泥回流比%
HI─供气量m3(空气)/m3污水 
ts─污泥龄d
说明:

①上表是根据回流污泥浓度4~8g/L确定的,回流污泥浓度改变时,相关数据也应相对改变。

②当所要求的处理效率降低时,Ls值可以增大。

③当进水BOD5小于一般城市污水的BOD5时,Ls应相应减少

④污水在曝气池内实际水力停留时间 t’=V/(1+R)Q? (h)

⑤曝气时间 t=曝气池有效容积V(m3)/污水设计流量Q(m3/h)=污水在曝气池内名义水力停留时间

二、
主要工艺特点

1.厌氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的减度可以补偿好氧池中进行硝化反应对碱度的需求。

2.好氧在厌氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。

3.BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。该工艺还可以将厌氧池与好氧池合建,中间隔以档板,降低工程造价,所以这种形式有利于对现有推流式曝气池的改造。


四、 A/O工艺的影响因素

A/O工艺运行过程控制不要产生污泥膨胀和流失,其对有机物的降解率是较高的(90~95%),缺点是脱氮除磷效果较差。如果原污水含磷浓度<3mg/L,则选用A/O工艺是合适的,为了提高脱氮效果,A/O工艺主要控制几个因素:

Ø MLSS一般应在3000mg/L以上,低于此值A/O系统脱氮效果明显降低。

Ø TKN/MLSS负荷率(TKN─凯式氮,指水中氨氮与有机氮之和):在硝化反应中该负荷率应在0.05gTKN/(gMLSS·d)之下。

Ø BOD5/MLSS负荷率:在硝化反应中,影响硝化的主要因素是硝化菌的存在和活性,因为自氧型硝化菌小比增长速度为0.21/d;而异养型好氧菌的小比增殖速度为1.2/d。前者比后者的比增殖速度小得多。要使硝化菌存活并占优势,要求污泥龄大于4.76d;但对于异养型好氧菌,则污泥龄只需0.8d。在传统活性污泥法中,由于污泥龄只有2~4d,所以硝化菌不能存活并占有优势,不能完成硝化任务。 要使硝化菌良好繁殖就要增大MLSS浓度或增大曝气池容积,以降低有机负荷,从而增大污泥龄。其污泥负荷率(BOD5/MLSS)应小于0.18KgBOD5/KgMLSS·d。

A/O生化污水处理设备


联系方式

  • 地址:潍坊 临朐县安家河工业园
  • 邮编:262603
  • 电话:0536-3468518
  • 经理:曾现超
  • 手机:15621707227
  • 微信:15621707227
  • QQ:1802417741
  • Email:1802417741@qq.com